
KRDB RESEARCH CENTRE

KNOWLEDGE REPRESENTATION
MEETS DATABASES

Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy

Tel: +39 04710 16000, fax: +39 04710 16009

KRDB Research Centre Technical Report:

RAW-SYS a Practical Framework for Data-awareBusiness Process Verification
Riccardo De Masellis1, Chiara Di Francescomarino1, Chiara Ghidini1,Marco Montali2, Sergio Tessaris2

Affiliation 1: FBK-IRST, Via Sommarive 18, 38050 Trento, Italy
2: Free University of Bozen–Bolzano, piazza Università, 1,

39100 Bozen-Bolzano, Italy

Corresponding Sergio Tessaris: tessaris@inf.unibz.it

author

Keywords workflow-nets with data, data-centric dynamic systems, action languages,
planning, Business Process Management systems

Number KRDB16-1

Date March 21, 2016

URL http://www.inf.unibz.it/krdb/pub/tech-rep.php#KRDB16-01

c©KRDB Research Centre. This work may not be copied or reproduced in whole or part for any commercialpurpose. Permission to copy in whole or part without payment of fee is granted for non-profit educational andresearch purposes provided that all such whole or partial copies include the following: a notice that such copyingis by permission of the KRDB Research Centre, Free University of Bozen-Bolzano, Italy; an acknowledgementof the authors and individual contributors to the work; all applicable portions of this copyright notice. Copying,reproducing, or republishing for any other purpose shall require a license with payment of fee to the KRDBResearch Centre.

tessaris@inf.unibz.it
http://www.inf.unibz.it/krdb/pub/tech-rep.php#KRDB16-01

1. Introduction

The need to extend business processes with the capability to handle complex data objectshas been increasingly recognised in the BPM area [15, 18, 9], and has lead to significantpractical and theoretical advances in the field. On the practical side, several well-establishedsuites capturing both the process control-flow and its relevant data are nowadays availableto end users as commercial and non-commercial tools. Notable examples are Bizagi BPMSuite, Bonita BPM, YAWL and Activiti. Despite different modeling choices (e.g., in the “front-end” graphical modelling language) and advanced functionalities, all such tools share a set ofcommon features. Business processes are expressed by means of typical workflow constructs,and the data dimension is added by using variables of complex data types, usually stored in a(relational) database. More importantly, how data are modified is often hidden inside the logicof activities, implemented, e.g., with Java classes, hence resulting in an essentially activity-centric model, where data are introduced in an ad-hoc way, as a sort of “procedural attachment”[9]. As a consequence, when coming to the formal verification of data related aspects, thesetools either offer only basic features (such as Data Type checks) without considering theinteraction between control- and data-flow, or they fail to correctly compute the answers toverification questions. This does not come as a surprise, as verification of standard propertieslike reachability is intrinsically undecidable when applied to data-aware processes, unlessconstraints are introduced to limit how the control-flow interacts with the data component.On the theoretical side, this problem has been thoroughly studied during the last 15 years,and there is a significant body of literature on the boundaries of decidability and complexityfor the verification of data-aware processes against different classes of formal properties. Wecan divide this literature in two main streams. In the first stream, variants of Petri nets areenriched, by making tokens able to carry various forms of data, and by making transitionsaware of such data. Examples in this stream are the well-known Colored Petri Nets, orthe many different forms of “data-enabled” nets [17, 23, 4, 24]. Such models suffer of twomain limitations. On the one hand, the modelling paradigm they adopt is different from theone used in the aforementioned BPM suites, which do not only make tokens and transitionsdata-aware, but also explicitly account for persistent data repositories (i.e., typically, of howthe process operates over full-fledged relational databases). On the other hand, relevantproperties remain either undecidable, or become decidable only after the data-related aspectsare extremely weakened. The second stream contains proposals that take a different approach:instead of taking a control-flow model and making it increasingly data-aware, they considerstandard data models (such as relational databases and XML repositories) and make themincreasingly “dynamics-aware”. Notable examples in this stream are relational transducers [3],active XML [2], the artifact-centric paradigm [22, 15], and the recently proposed model of data-centric dynamic systems (DCDSs) [5]. These models maintain decidability with expressive datamodels and are, in principle, in line with the way BPM suites deal with processes and data.Nonetheless, the languages they propose are abstract and far from concrete BP modellinglanguages and architectures. Moreover, they lack any tool support. As a consequence, theystruggle to produce an impact in the BPM community.In this report we introduce a framework (RAW-SYS) aiming at bridging the gap betweentheory and practice, for modelling and verifying data-aware processes as represented by wellestablished BPM suites. From the modelling point of view, we achieve our goal by combiningthree approaches: (i) workflow nets [26], the most popular formal language for specifying theprocess control-flow; (ii) relational database with expressive constraints (such as integrityconstraints, keys, foreign keys, and so on), the most widely adopted model for describing data;and (iii) DCDS, one of the richest formalisms to express how an atomic task in the processmay update the underlying relational database, possibly introducing fresh data not alreadypresent in the system [5]. This combination leverages on, and overcomes the limitations of,

1

Petri Nets and data-centric approaches. It also ensures RAW-SYS to reflect concrete BPMarchitectures while maintaining solid formal basis.
2. The RAW-SYS Framework

Our intention is to propose a framework for modeling data-aware processes that accounts forthe concrete models used inside BPM suites, but also generalises from the specificities of asingle suite. This is achieved in three steps: first, we shape RAW-SYS to capture the intuitionbehind most of the adopted BPM tools, by using workflow nets as a language-independent wayfor representing the control-flow related aspects; second we rely on the standard relationaltechnology for the data-related aspects; and third we borrow some key concepts introducedin formal models for data-aware processes [5, 20], to capture how atomic tasks operate overthe underlying data, a crucial aspect that suites typically leave underspecified and heavilydependent on ad-hoc implementations.Figure 1 depicts the conceptualisation of the framework where different processes (cases)execute in parallel using private data stores (the local database). The dynamic aspects ofprocesses are described by means of WFNets, while tasks are specified by updates on the localdatabase and fetch data from the environment via web services or user interaction. Runningcases do not interact directly but store results of their processing on a global data store (the
shared database). Cases cannot access the shared database, which is updated only when anew case is created or terminated. Periodically, data from the shared database are transferred

Task

local

Task

local

Task
Case

new case close case archive

shared

local

archive

Figure 1: RAW-SYS architecture.
to the archive database where they are no longer accessible to the system and can be usedonly for external auditing or analysis; this transferral can be controlled by queries over thecurrent state of the system.
Example 1. Assume a scenario in which company GoodsKit is equipped with an informative
system which manages data and processes. Such a system can be represented, in an abstract
manner, by the architectural view in Figure 1 which can easily be mapped to real process
modelling suites such as the ones mentioned in Section 1. The informative system manages
data and processes about processes that cover all the business needed by GoodsKit, from
good’s production to employees’ reimbursement procedures (RB) for their business trips (whose
workflow is depicted in Figure 2 and illustrated in detail in the next section). At runtime, each
process is instantiates by a number of processes instances, or cases, that an be active at the
same time, progressing through different tasks by usually interacting with external agents and

2

modifying data as a result of such interactions. For example, assume that one of the instances
active in the system refers to execution of RB, handling the reimbursement of the business trip
of employee john to NewYork. The instance progresses when, e.g., john fills a reimbursement
form for his trip.

Data model. The data model is built on top of a standard relational database with a schema(i.e., a set of relations) and a set of denial constraints, expressed as safe range FO formulaeover a fixed common countably infinite set of constants [1].1 In addition, we associate to therelational database an initial database instance satisfying the constraints.
Example 2. The schema for the global data store contains, in general, data of interest for
the whole organisation, so data manipulated by all processes. Due to lack of space, we re-
strict to relations accessed by the RB process. Global relations Empl(empl) and Dest(dest)
contain the employee entitled to have business trips and the allowed destinations. Relation
Pending(empl, dest) contains requests that are still pending, while Accepted(empl, dest, amnt)
and Rejected(empl, dest) those that are respectively successfully completed or rejected (in the
first case, also keeping track of the amnt refunded to the employee). Underlined attributes
are primary keys. Moreover, we have that Pending[empl] and Pending[dest] are two foreign
keys respectively referencing Empl[empl] and Dest[dest] (similarly for Accepted and Rejected).

The RB local relations are: (i) CurrReq(empl, dest , status), listing the employees that re-
quested a reimbursement, the trip destination and the status of the request; (ii) TrvlMaxAmnt(maxAmnt),
containing the maximum amount estimated by the travels office for the trip; (iii) TrvlCost(cost),
storing the costs sustained by the employee.

Control-flow. The process control-flow is modelled in a prescriptive fashion leveraging stan-dard workflow nets [26] enriched with data. We call the resulting nets DWF-nets. We assumefamiliarity with the well-known framework of workflow nets, and consequently focus on ourdata-aware extension. Intuitively, DWF-nets are standard workflow nets extended with a (lo-cal) relational database. The local database is populated with initial data when a token isinserted in the input place of the net. In addition, transitions are extended to deal with data:their execution is guarded by queries over the local database, and leads to induce an updateover such database. As for the workflow nets constituting the basis of our DWF-nets, weconcentrate on 1-safe nets, which generalise the class of structured workflows and are thebasis for best practices in process modelling [16].2 It is important to notice that our approachcan be seamlessly generalized to other classes of Petri nets, as long as it is guaranteed thatthey are k-safe. This reflects the fact that the process control-flow is well-defined.
start reviewReq

tau

fillReimb review
Reimb end

Figure 2: Travel Management Workflow-net
Example 3. We resume the reimbursement (RB) example by reporting its control-flow in terms
of a workflow net (see Figure 2).Each net has an associated local database that stores private data not accessible by otherrunning process. Each transition of the net interacts with the underlying local database.In particular, each transition expresses the execution of a task in terms of three differentcomponents:

1This is standard. Recall that relational algebra is safe range by construction.2Recall that a workflow net is k-safe if each place in the initial marking – and in all the reachable markings –contains at most k tokens.

3

• guard, a FO query over the local database determining whether the transition can triggeror not, and binding its parameters accordingly;
• (nondeterministic) external services, functions representing the the interface to externalsources of information, such as input forms used by human users, or calls to external webservices, in the style of [5, 20];
• action, a specification of (possibly bulk) updates over the local database, which dependon the current database content, the binding provided by the guard, and the additionaldata obtained through the external services.The valid firing of a transition – in addition to the usual marking conditions on the inputplaces, as specified by the workflow net – is conditioned by the satisfiability of the guard andthe successful application of the action. Note that an action might be unsuccessful because ofa violation of a constraint in the local database.The dynamic of the system is defined using actions that update database instances. Manydifferent update formalisms exist in the literature. We adopt the approach in [5, 20], whichallows to express virtually any pattern of update, including CRUD operations over the lo-cal database, but also bulk operations that simultaneously manipulate large portions of thedatabase at once. An action, in turn, is described by a set of add and remove operations on thedatabase instance “conditioned” by a safe range query. Formally an action is an expressionact(p1, . . . , pn) : {e1, . . . , em} with each ei of the form:

Q(~x) add R(~x) or Q(~x) del R(~x)where Q is a safe range query over the database schema, and R(~x) a literal over the schema.Effects sharing the same query can be grouped into a single expression. The effects ei areassumed to take place simultaneously.3In addition R(~x) may include external input functions that model the interaction with externalservices: at runtime function occurrences are substituted by the value returned by issuing thecorresponding service call. Some of those services can be guaranteed to return fresh values(i.e. constants not included in the current database). This feature is essential to enable thecreation of new objects via new identifiers (e.g., the creation of a new order by obtaining aunique order identifier).
Example 4. Recall that activity reviewRequest examines the employee’s request to leave for a
business trip and evaluates the maximum reimbursable amount (possibly based on the selected
destination). The effect of the corresponding action rvwReq() is specified as:

CurrReq(e, d, s) del {CurrReq(e, d, s)}
add{CurrReq(e, d, status()),TrvlMaxAmnt(maxAmnt())}

In order to update the request status, the tuple representing the current travel request in
the CurrReq relation must be first deleted and then added with the new status (recall that
additions have higher priority than deletions). Query CurrReq(e, d, s) selects such a tuple,
effect del{CurrReq(e, d, s)} deletes it while add{CurrReq(e, d, status())} adds the same tuple
but with a new value for the status. Also the value of the max reimbursable amount is added
by the fact TrvlMaxAmnt(maxAmnt()). Notice the use of functions status() and maxAmnt() to
model unknown values coming from the external environment, in our case the company travels
office.

2.1. Data model

Relational database schema. The data component is a full-fledged relational database withconstraints. Technically, D = 〈∆,R, C, I0〉, where:
3As customary in planning and reasoning about actions, additions have higher priority than deletions; this auto-matically sorts out the case in which the same fact is asserted to be deleted and added at once.

4

• ∆ is a countably infinite set of constants.
• R is a database schema, i.e., a set of relation schemas. We will equivalently adopt thepositional notation or the attribute-based named notation for relations; When the latternotation is used, an n-ary relation R is represented as R(U), where U is a set of n namedattributes. Furthermore, given a set A ⊆ U of attributes, R [A] represents the projectionof R over A.
• C is a set of safe range FO-constraints over R, capturing the real-world constraints ofthe targeted application domain.
• I0 is the initial database instance of S, i.e., a database instance conforming to R, satis-fying the constraints C, and made of values in ∆.Among all possible FO-constraints, we consider the following specific constraints, which arewidespread in database modelling and standard conceptual modelling languages such as UMLclass diagrams, E-R diagrams, and the ORM notation:
• Standard key and primary key constraints. We use notation KEY(R [A]) (resp., RA) tomodel that the set A of attributes is a key (resp., primary key) for relation R .
• Standard foreign key constraints. We use notation R [A]−→S[B] to model that the set Aof attributes in R is a foreign key pointing to the set B of attributes in S, such that SBholds.
• Cardinality-constraints, which resemble cardinality/frequency constraints of conceptualmodelling languages. Cardinality-constraints generalize key constraints by bounding theminimum and maximum number of tuples allowed in a relation when the value of someattributes is maintained unaltered. Given a relation R(U) and a set A ⊆ U of attributes,notation CARD(R [A], m..n), where m and n are positive integers, denotes the cardinality

constraint requiring that the number of R-tuples with the same values for attributes Aranges between m and n.
• A combination of cardinality and foreign key constraints, where a foreign key has anassociated cardinality constraint guaranteeing that the number of tuples pointing tothe same target primary key is bounded. We denote by A[R]m..n−−−−→B[S] the databaseconstraint corresponding to the conjunction of A[R]−→B[S] and CARD(A[R], m..n), and callsuch a conjunction a cardinality-bounded foreign key constraint. Notice that A[R]1..1−−−→

B[S] is equivalent to the combination of KEY(R [A]) and A[R]−→B[S].In the following we assume a fixed shared domain ∆. An instance of a database is a mappingfrom each relations in R to a finite set of tuples over ∆. Each tuple is labeled by a constant in∆ which represent provenance information; a special symbol ε ∈ ∆ labels tuples in the initialdatabase instance.
Functions. The interface to a (nondeterministic) external service (e.g. user interaction) is mod-elled by means of finite sets of functions from ⋃n≥0(∆n 7→ ∆). We assume a set of skolem terms
f (~x) associated with a function of the same arity. For the sake of simplicity, in the followingwe’ll use F to indicate both a set of functions and corresponding skolem constants.
Actions. Given a source D s = 〈∆,Rs, Cs, Is0〉 and target D s = 〈∆,Rs, Cs, Is0〉 relational databases,and a finite set of functions F , an action over D s, D t , and F is an expression actD s,D t ,F (p1, . . . , pn) :
{e1, . . . , em}, where:
• act(p1, . . . , pn) is the action signature, constituted by a name act and a sequence p1, . . . , pnof parameters, to be substituted with values when the action is invoked;
• {e1, . . . , em}, also denoted as effect(act), is a set of effects, which are assumed to takeplace simultaneously.Each effect ei has the form

Q(~p, ~x) add A(~p, ~x, ~y) del D(~p, ~x)
5

where:
• Q is a safe range FO query over Rs whose terms are variables, action parameters, andconstants from Is0 . Intuitively, Q selects the tuples to instantiate the effect with. Duringthe execution, the effect is applied with a ground substitution ~d for the action parameters,and for every answer θ to the query Q(~d, ~x).
• A is a set of facts overRt , which include as terms: free variables ~x of Q, action parameters
~p, and/or Skolem terms f (~x ′, ~p′) (with ~x ′ ⊆ ~x , and ~p′ ⊆ ~p) corresponding to functions in F .At runtime, whenever a ground Skolem term is produced by applying substitution θ to A,the corresponding service call is issued, replacing it with the result (from ∆) returned bythe invoked service. The ground set of facts so obtained is added its current databaseinstance.

• D is also a set of facts over Rt , which include as terms free variables ~x of Q and actionparameters ~p. At runtime, the ground facts obtained by applying substitution θ to D are
removed from the current database instance.As in STRIPS, we assume that additions have higher priority than deletions (i.e., if the samefact is asserted to be added and deleted during the same execution step, then the fact isadded). The “add A” part (resp., the “del D” part) can be omitted if A = ∅ (resp., D = ∅).

2.2. Petri Nets with Data

Definition 1 (Petri Net [13]). A Petri Net is a triple 〈P, T , F 〉 where

• P is a set of places;

• T is a set of transitions;

• F ⊆ (P × T) ∪ (T × P) is the flow relation describing the “arcs” between places and
transitions (and between transitions and places).

The preset of a transition t is the set of its input places: •t = {p ∈ P | (p, t) ∈ F}. Thepostset of t is the set of its output places: t• = {p ∈ P | (t, p) ∈ F}. Definitions of pre- and
post-sets of places are analogous.

The marking of a Petri net is a total mapping M : P 7→ N.

Definition 2 (WF-net [25]). A Petri net 〈P, T , F 〉 is a workflow net (WF-net) if it has a single
source place start, a single sink place end, and every place and every transition is on a path
from start to end; i.e. for all n ∈ P ∪ T , (start, n) ∈ F ∗ and (n, end) ∈ F ∗, where F ∗ is the
reflexive transitive closure of F .

The semantics of a PN is defined in terms of its markings and valid firing of transitionswhich change the marking. A firing of a transition t ∈ T from M to M ′ is valid – denoted by
M t→ M ′ – iff:
• t is enabled in M , i.e., {p ∈ P | M(p) > 0} ⊇ •t; and
• the marking M ′ satisfies the property that for every p ∈ P:

M ′(p) =

M(p)− 1 if p ∈ •t \ t•
M(p) + 1 if p ∈ t• \ •t
M(p) otherwise

Definition 3 (safeness). A marking of a Petri Net is k-safe if the number of tokens in all places
is at most k . A Petri Net is k-safe if the initial marking is k-safe and the marking of all traces
is k-safe.

6

In this document we focus on 1-safeness, which is equivalent to the original safeness propertyas defined in [26].4 Note that for safe nets the range of markings is restricted to {0, 1}.This class of networks generalises structured workflows and are the basis for best practicesin process modelling [16]. It is important to notice that our approach can be seamlesslygeneralised to other classes of Petri nets, as long as it is guaranteed that they are k-safe.This reflects the fact that the process control-flow is well-defined.
Definition 4 (DP-net [13]). A Petri Net with data is a tuple 〈D , P, T , F ,F ,A,G〉 where

• D is a relational database schema;

• 〈P, T , F 〉 is a Petri Net;

• F is a function that associates each transition with a finite set of functions, each repre-
senting the interface to a (nondeterministic) external service;

• A is a function that associates each transition t with an action over D , D and F (t);
• G is a function that associates each transition with a safe range query over D (the guard).

Task actions may include parameters, in that case the guard free variables must match the
parameters of the corresponding tasks.

A state of a DP-net 〈D , P, T , F ,F ,A,G〉 is a pair (M, I) where M is a marking for 〈P, T , F 〉and I is an instance of the relational database D .
Definition 5 (Valid DP-net Firing). Given a DP-net 〈D , P, T , F ,F ,A,G〉, a valid firing of a
transition t in (M, I) resulting in a state (M ′, I ′) (written as (M, I) t→ (M ′, I ′)) iff:

• t is enabled in M , i.e., {p ∈ P | M(p) > 0} ⊇ •t; and

• the guard G(t)(~c) is satisfied (i.e. evaluates to true) w.r.t. I and a ground instantiation ~c
of its free variables;

• the marking M ′ satisfies the property that for every p ∈ P:

M ′(p) =

M(p)− 1 if p ∈ •t \ t•

M(p) + 1 if p ∈ t• \ •t
M(p) otherwise

• the new database instance I ′ is the results of the application of A(t)(~c);
• I ′ satisfies the constraints in D .

A Workflow net with data (DWF-net) is a tuple 〈D , P, T , F ,F ,A,G〉 where 〈P, T , F 〉 is aWF-net.Within ∆ we identify a set of constants ℘ which represents the set of process identifiers.
Process case. A (process) case is a tuple 〈i, w, (M, I)〉 where i ∈ ℘ is a process id, w a DWF-net and (M, I) a state of w . A case represents the snapshot of a single process instance of aDFW-net.

4In the following we will use safeness as a synonym of 1-safeness.

7

2.3. Business Process Model and SemanticsA RAW-SYS model of a business process consists of a set of DWF-nets together with a sharedrelational database. In addition, the model specifies, for each DWF-net, an initialisation andan update actions that respectively detail how a local database is initialised upon a caseactivation for that process, and how the shared database is updated upon the terminationof a process. The initialisation actions, in addition to the initialisation of the local databaseinstance, could update the shared database; e.g. a purchase order taken in charge by a processis removed from the queue. The activation of new processes is regulated by means of queriesover the shared database that verify whether a new case for a specific net can can be created.
Definition 6 (Business Process Model). A Business Process Model is a tuple 〈DG ,W,S, E , σ〉,
where

• DG is a (shared) relational database;

• W is a set of workflow nets with data;

• S is a function that associates each WF-net in w ∈ W having the local database Dw
with an action over DG , Dw ∪ DG , ∅ that initialises the local database using the shared
database;5

• σ is a function that associates each WF-net in w ∈ W with a safe range query over the
shared database to verify wether a new case of that net can be instantiated.

• E is a function that associates each WF-net in w ∈ W having the local database Dw with
an action over Dw ∪DG , DG , ∅ that updates the shared database using the local database;

Case initialisation actions may include parameters, in that case the corresponding query free
variables must match these parameters.Semantics is provided in term of global states (snapshots) that include the set of all activecases as well as the instances of the shared and archive databases. The behaviour of thesystem is described by means of all the possible sequences of snapshots evolving from theinitial one. The initial snapshot has an empty set of cases (none of the processes is active),an empty archive database instance, and the shared database instance specified. It is worthnoting that, due to the presence of external service calls and also due to the possibility ofnondeterministically spawning new process cases, the execution semantics of a RAW-SYSneeds in general to account for an infinite number of states, as well as truly infinite runs thatmay visit infinitely many different databases. This is a standard issue when processes aremade data-aware [9].
Definition 7 (Business Process Model Snapshot). A business process model snapshot of 〈DG ,W,S, E , σ〉
is a tuple 〈IS , IA, C〉 where:

• IS is a (shared) database instance of DG ;

• IA is an (archive) database instance of DG ;

• C is a set of cases from W.Sequences of valid snapshots are defined according to the following four types of transitionsthat can nondeterministically evolve the system.
Case firing: one of the tasks of an active case can be executed by picking a suitable substitutionfor its parameters and for the involved service calls, updating the local database instance andthe net marking.

5The action can update the shared database as well.

8

Creation of a new case: queries over the shared database establish which RAW-NET can beactivated and the associated parameters. Among these a new case is created and includedamong the set of active cases. The local database is initialised using the data from the shareddatabase instance and query parameters, while the marking is initialised with a token inthe initial, input place. Each new case is associated with a unique fresh identifier, and theinitialisation is specified by means of an action that might update also the shared database(so as to globally inform the system that a new case indeed started).
Termination of a completed case: one of the active cases having a token in the final, outputplace is removed from the set of active cases, and the shared database instance is updatedaccording to the associated action. If the update violates one of the constraints the transitionis not valid, therefore the case cannot be terminated nor removed from the set of active cases.
Archival of data: given a set of terminated process ids, the tuples in the shared instancemarked with those ids are moved to the archive database instance. The transition is validonly if the shared database constraints are satisfied both in the resulting shared and archiveinstances. If any information must be guaranteed to be always present in the shared database,and not transferable to the archive, then this can be enforced by means of integrity constraints.
Definition 8 (Valid Transitions). Given a business process model snapshot 〈IS , IA, C〉, a validtransition leading to a new snapshot 〈I ′S , I ′A, C′〉 is one of the following type of transitions.

1. Case firing: if (M, I) t→ (M ′, I ′) valid DWF-net firing for a case ω = 〈i, w, (M, I)〉 ∈ C.
Then the new snapshot is 〈IS , IA, C′〉 where C′ = C \ {ω} ∪ {〈i, w, (M ′, I ′)〉}.

2. Activation of a new case: given a DWF-net w = 〈D , P, T , F ,F ,A,G〉 s.t. σ (w)(~c) is
satisfied on IS for a ground instantiation ~c of its free variables, a fresh process id i ∈ ℘,
M a marking of w with a single token in the start place, and I , I ′S are legal database
instances of Dw and DG generated by the action S(w)(~c) over the shared database IS .
Then the new snapshot is 〈I ′S , IA, C′〉 where C′ = C ∪ {〈i, w, (M, I)〉}. Tuples added to I ′S
by the action are marked with the new fresh process id.

3. Termination of a completed case: given a case ω = 〈i, w, (M, I)〉 ∈ C with a token in the
end place, I ′S a the legal database instance of DG generated by the action E (w) using
the database instance I . Then the new snapshot is 〈I ′S , IA, C′〉 where C′ = C \ {ω}.

4. Archival of data: given a set of inactive process ids P – that is for any case ω =
〈i, w, (M, I)〉 ∈ C, i 6∈ P – the set of tuples τ in IS marked by an id in P, I ′S = IS \ τ a
legal instance of DG , and I ′A = I ′A ∪ τ a legal instance of DA. Then the new snapshot is
〈I ′S , I ′A, C〉.Note that tuples marked by terminated processes can always be archived unless doing sois prevented by the violation of integrity constraints on the shared database. Moreover, initialtuples (those marked with ε) are never archived and can only be deleted/updated by meansof task actions.If any information must be guaranteed to be always present in the shared database, thenthis can be enforced by means of integrity constraints.

Definition 9 (RAW-SYS trajectories). A trajectory is a sequence of snapshots starting from
the initial snapshot and where each pair of adjacent snapshots is compatible with a valid
transition.

3. Reachability Analysis in RAW-SYSs

We now consider the reasoning task of reachability in RAW-SYSs. This amounts to checkwhether there exists a run of the input RAW-SYS that reaches a state in which a desired
9

boolean query, expressed over the global data store, holds. In order to enable queries overthe state of the processes we include an additional meta-predicate bind to the marking ofthe active cases. This additional predicate does not affect the properties of the system asdescribed below. Moreover, as clarified in the following sections, its encoding in the DCDSmodel does not require any additional infrastructure.
Undecidability of reachability. It is well-known that, once the pure control-flow perspectiveof BPM is enriched with the explicit manipulation of data, reachability turns out to be un-decidable, even by severely restricting the modeling capabilities of the data-aware processlanguage at hand [9]. This strong negative result immediately carries over our setting. Manydifferent techniques have been proposed in the literature so as to regain decidability of reach-ability and of more sophisticated forms of temporal model checking (see [27, 9] for a survey ofresults). In this work, we rely on the notion of state-boundedness, which has been extensivelyexploited for providing strong, robust decidability conditions in a plethora of data-aware pro-cess frameworks, including systems working over complete, relational data [8, 5], systems withincomplete data enriched with ontologies [7, 11], as well as Situation Calculus action theories[12]. Essentially, state-boundedness requires to limit, a-priori, the number of objects that canco-exist in the same state. For a relational database, this means that the size of the databasecannot exceed a fixed threshold. Note that a state-bounded system still accepts unboundedlymany objects to appear within and across runs.In all such previous works, there is a single, global data storage, whose size is subjectto the bound. In our setting, there are three information sources to which boundedness canbe applied: the shared data store, the local data store, and the number of active cases.Two research questions then arise: (1) Can state-boundedness help towards decidability ofplanning over RAW-SYSs? (2) If so, which of the information sources must be necessarilybounded towards decidability?We start by attacking the second research question, showing that as soon as one of suchthree information sources is not bounded, reachability of a query constituted by an atomicproposition is undecidable. All proofs are via reduction from the halting problem for determin-istic, two-counter machines (2CMs), well-known to be undecidable [19].We first consider two cases where there can be only one active case, and either the globalor the local data stores are unbounded, while the other data store is bounded.
Theorem 1. Checking reachability of an atomic proposition is undecidable over RAW-SYSs
where: (i) the shared data store contains a single proposition only; (ii) there is exactly one
RAW-NET, of which at most one instance is running; (iii) the local database this RAW-NET
contains only two unary relations, whose extension is not bounded.

Proof sketch. Given a 2CM M, we construct a RAW-SYS S that reaches a target atomicproposition if and only if M halts. S has a shared data store that is initially empty, andwhose schema contains only a single atomic proposition Hit. Furthermore, it contains a singleRAW-NET N that simulates the computation of M. The structure of M is encoded into theworkflow net of N : (i) each place corresponds to a control-state of M; (ii) the input andoutput places correspond to the start and halting control-states of M; (iii) each transitioncorresponds to a counter operation, where the workflow net expresses how the operationupdates the current control-state ofM, whereas the update induced by the transition over thelocal data store mimics the counter manipulation; (iv) decrement transitions and transitionsexecuted when a counter is 0 are guarded by two corresponding queries over the local datastore (see below). The values maintained by the two counters correspond to the size of theextension of two unary relations C1 and C2, which constitute the schema of the local data store.Incrementing counter i amounts to introduce a fresh value in the extension of Ci, decrementingcounter i amounts to delete an object in the extension of Ci, and testing whether counter iis (not) 0 amounts to check whether the extension of Ci is (not) empty. Finally, the update
10

induced by N on the shared data store upon completion simply amounts to toggle the Hitflag. In this way, S reaches Hit if and only ifM halts.
Theorem 2. Checking reachability of an atomic proposition is undecidable over RAW-SYSs
where: (i) the global data store contains only two unary relations, whose extension is not
bounded; (ii) there is exactly one RAW-NET, of which at most one instance is running; (iii) the
local database this RAW-NET is always empty.

Proof sketch. The proof is similar to that of Theorem 1, with the difference that the unaryrelations used to simulate the counters are now in the shared data store. The shared datastore is also equipped with a finite set of atomic propositions, one per state of the 2CM. Ina given snapshot, only one of such atomic propositions holds (modeling that the 2CM is in acertain current state). The single RAW-NET has a trivial structure with an input and outputplaces connected by a single, tau transition. Upon creation of an instance of such a RAW-NETwith, it is checked which of such propositions currently holds, triggering a suitable, immediateupdate of the current state (i.e., substituting the current proposition with the next one, inaccordance to the control-state update of the 2CM), and an update on the extension of thetwo counter relations, with the same strategy discussed in the proof of Theorem 1.
The most tricky case is the one in which the shared and local data stores are all bounded, butthe number of simultaneously active cases is not. Towards undecidability, we cannot anymoreexploit the same technique adopted in the previous two cases, since it is not possible anymoreto exploit the local/shared data store to remember the value of the two counters. Furthermore,when a certain process case becomes active, its evolution cannot be affected by that of other,simultaneously active cases, since it only works on its local data. In spite of such two stronglimitations, we get the following.

Theorem 3. Checking reachability of an atomic proposition is undecidable over RAW-SYSs
where: (i) there is exactly one RAW-NET, of which unboundedly many instances can simulta-
neously coexist; (ii) the global data store, as well as the local data store of RAW-NET, contain
unary relations only, whose size is bounded.

Proof sketch. Let N be the single RAW-NET of the considered RAW-SYS. The workflow net of
N is again the trivial net containing a single, no-op transition. However, it is now associatedto two sophisticated updates to be applied when an instance of N is created or terminates itsexecution,The two counters are simulated using two “chains” of active cases, where the value of thecounter is the length of the chain minus 1. The main difficulty is how to rigidly keep trackof the ordering between cases in a chain, and how to properly manipulate the chain, giventhe fact that the information about the chain itself cannot be stored anywhere, being all thedata stores bounded. We attack this problem as follows. First of all, each instance of Nexposes itself via a “ticket”, i.e., a unique identifier that is made explicit in the global datastore (this is necessary, since the internal case identifiers are not visible). The global datastore remembers the current, control-state of the 2CM by adopting the same technique as inthe proof of Theorem 2. It also remembers the extreme points of the two chains (i.e., the ticketsof the instances at their top/bottom).Since the 2CM is deterministic, we can assume that each control-state has a unique succes-sor state obtained via a counter-increment operation, or two successor states, one achievedwhen a counter is positive and gets decremented, the other achieved when the same counteris zero. Increment is then simulated by allowing for the creation of a new N -instance only ifthe current control-state has an increment transition. Upon creation, the instance consumesthe information about the instance that is currently at the top of the corresponding chain,remembering the corresponding ticket in a local, “previous ticket” relation. At the same time,

11

it generates a fresh ticket identifying itself, and updates the global data store by declaringthat this ticket is now at the top of the chain. This immediately simulates increment, andtherefore the very same update also updates the control-state.Decrement transitions for a counter are simulated by the termination of the active N -instance that is at the top of the corresponding chain. However, termination is not explicitlycontrollable in the specification: all active N -instances evolve in parallel and in isolation toeach other, and consequently there is no explicit way of selecting only the instance at thetop of the chain and induce its termination. To enforce this, we leverage the fact that a RAW-NET case can properly terminate only if the corresponding update satisfies the constraintsof the shared data store. In particular, we make sure that whenever a N -instance wants toterminate, a constraint is violated if the ticket of that instance does not correspond to that atthe top of the chain. When the top-instance is picked, it successfully terminates by updatingthe control-state, and declaring that the top ticket is now the one store in its “previous ticket”relation.Transitions triggered by a zero test are simulated in a similar way, discriminating themfrom decrement transitions by simply checking whether the selected, active N -instance is notonly at the top of the chain, but also at the bottom (i.e., the chain contains only such aninstance).
Decidability for Bounded RAW-SYSs. To attack the given strong undecidability results, wenow concentrate on the situation were all thre three information sources for RAW-SYSs arebounded. We simply refer to such systems as bounded RAW-SYSs. We stress that suchsystems are by no means finite-state, since they still allow for storing unboundedly many datawithin and across system runs, provided that they do not accumulate in the same snapshot.In particular, bounding the number of simultaneously active instances can be seen as a sortof “limited resources” assumption, for which the resources of a company can be allocatedto boundedly many cases, but once a case is finished, its resource is freed and ready to bereallocated to a new case (making hence possible to execute infinitely many cases along time).For bounded RAW-SYSs, we finally prove the following positive result, thanks to a reductionto the framework of data-centric dynamic systems (DCDSs) [5].
Theorem 4. Checking reachability over bounded RAW-SYSs is decidable in PSPACE in the
size of the initial shared data store.

Proof sketch. The proof is done in three steps: (1) we provide a behavior-preserving encodingof RAW-SYSs into DCDSs; (2) we argue that if the input RAW-SYS is bounded, then the DCDSobtained via the encoding is state-bounded in the sense of [5]; (3) we formulate reachabilityover the input RAW-SYS as a verification problem over the corresponding DCDS - decidabilityis then obtained by [5], in which verification over state-bounded DCDSs has been shown to bedecidable. The main guideline for the encoding is as follows. The DCDS data component isobtained by combining the global data store together with the local data stores. All such rela-tions are augmented with an additional attribute that explicitly accounts for the “provenance”of each tuple. In addition, an accessory relation is added so as to track the control-flow stateof each such instance. The dynamic component is obtained by introducing dedicated actionsfor the creation/archival of cases, and for the update induced by a case when it terminates. Inaddition, each RAW-NET net is translated into a set of dedicated actions (one per transitionin the workflow net), following the same strategy as in [6]. The fact that the obtained DCDS isstate-boundedness derives from the boundedness if the input RAW-SYS, and the fact that wefocus on 1-safe workflow nets. As for the complexity, n general verification over state-boundedDCDSs requires to explore, in the worst-case, a number of states that is exponential in thesize of the initial database. However, in the case of reachability, this exploration can be doneon-the-fly, using space that is polynomial in the size of the initial data store.
12

4. Encoding RAW-SYS framework in DCDS

Let us consider the BPM 〈DG ,W,S, E , σ〉. We show how the behaviour of the model can beencoded in a DCDS 〈D ,P〉. To simplify the description of the encoding we assume that everytask and place in W DP-nets are distinct, as well as action names and relations.
4.1. Data ComponentAlthough in the framework we consider different relational databases, DCDS condition-actionrules operates on a single database that must include all the necessary relations. Withoutloss of generality we can assume that all the schema signatures are distinct (including theones of the shared and archive databases).
• The schema of D is the union of the schema DG , DA and all the schemata of the nets in
W.
• Each relation include an additional attribute restricted to the set of process identifiers(the ID attribute). For any original relation R we indicate with R℘ the correspondingrelation with the additional attribute and with R℘(x)(~y) the literal R℘(x, ~y).6
• Let Q(~x) be a query using local or shared schemata, then its translation Q(~x)℘(i) it’s aformula with the same structure of Q were each literal R(~y) is substituted by R℘(i)(~y) if
R is local or ∃iR℘(i)(~y) if R is a shared or archive relation.
• The domain ∆ include the set of places of all the nets in W. We assume that the set ofplaces of each net are distinct.
• The schema include an additional relations used for “process bookkeeping”

Marking binary relation ranging over the process ids and the places. The relation storethe information about “active” places, i.e. those holding a token.
Active unary relation holding the set of terminated process ids whose tuples are notyet archived.
ToArchive unary relation holding the set of process ids to be archived.
• Integrity constraints of shared and archive databases holds “across” ID attributes; i.e.the original constraints in the DCDS database hold on the of the new relations were theid attribute is “projected away”. Given an the integrity constraint γ (closed safe rangeFOL formula) over the shared/archive database, the corresponding DCDS constraint is
γ℘ . Since all relations in γ are shared, then the process id variable is not relevant.
• Integrity constraints of local databases are “contextual” w.r.t. the ID attribute. Thatmeans that the all the additional PID arguments will be bound to the same variableuniversally quantified. Given an the integrity constraint γ for a local database, thecorresponding DCDS constraint is

∀i(∃pMarking(i, p)→ γ℘(i))
Local databases are relevant only while processes are running, i.e. there are tokens insome place.

6We assume that the attribute is always the first one.

13

4.2. Process ComponentEach of the kind of transactions are encoded into condition-action rules evolving the datacomponent according to the above defined semantics.Actions defined in the framework are translated into DCDS over the data component bytaking into account the additional process id attribute. In particular, each action will have anadditional parameter that is going to be instantiated with the process id of the case to whichthe action is applied.Let act(p1, . . . , pn) : {e1, . . . , em} be a RAW-SYS action over D s, D t ,F . Without loss ofgenerality we can assume that each effect contains a single relation on the rhs; i.e. is in oneof the two forms
Q(~p, ~x) add R(~y) (1)
Q(~p, ~x) del R(~y) (2)

where R is a local or global relation and ~y is a subset of ~p, ~x or some skolem constants. Thecorresponding translation act(p1, . . . , pn)℘(i) includes a new parameter i corresponding to theprocess id, and it’s defined as act(i, p1, . . . , pn) : {e℘(i)1 , . . . , e℘(i)
m } where an effect Q(~p, ~x)

op R(~y) translated according to the kind of update op and whether R is local or shared:
(add) Q(~p, ~x)℘(i) add R℘(i)(~y) in both shared and local cases;
(del, local) Q(~p, ~x)℘(i) del R℘(i)(~y);
(del, shared) Q(~p, ~x)℘(i) ∧ ∃ ~y′R℘(i′)(~y′) del R℘(i′)(~y).
Since there might be several tuples in the DCDS database corresponding to the same tuplein the shared database, each one with a different process id, then the delete must remove allthe occurrences regardless of the process id.Given a model 〈DG ,W,S, E , σ〉, the corresponding process component of the DCDS systemis defined by the following ca-rules simulating the above described transitions.
Case firing Each task is translated into a DCDS condition-action rule where the query of thecondition-action rule include the original guard (literals enriched by the process id argument)conjoined with a condition ensuring that all of the input places are active.The action include an additional parameter for the process id that is included added to allthe literals and an additional effect that “deactivate” the input places and “activate” the outputones; updating the Marking relation.Let t be a task in one of the DP-nets 〈D , P, T , F ,F ,A,G〉, G(t) the guard of t, A(t) =actt(~c) : {e1, . . . , em} its action, {pi1, . . . , pik} = •t its input places, and {po1 , . . . , po` } = t+ itsoutput places. The corresponding ca-rule became:

Marking(i, pi1) ∧ . . . ∧Marking(i, pik) ∧ G(t)(~c)℘(i)
7→

e℘(i)1 , . . . , e℘(i)

mtrue del {Marking(i, pi1), . . . ,Marking(i, pik)}true add {Marking(i, po1), . . . ,Marking(i, po`)}

Activation of a new case For each net in W there is a condition-action rule that, conditionedby the query that ensures that a new case of the specific net can be activated, initialises therelations of the local data store and activates the start place.The rule makes use of a 0-ary service call newId that returns a fresh value for the processidentifier (see A.4).
14

The action includes the effects of the initialisation for the local relations and the update ofthe Marking relation.Let w ∈ W be a DP-net in the model, S(w) = actw (~c) : {e1, . . . , em} its initialisation action,and start its start place. The corresponding rule is:
σ (w)(~c)℘(i) 7→

{
e℘(newId)1 , . . . , e℘(newId)

mtrue add Marking(newId, start)
}

Termination of a completed case For each net in W there is a condition-action rule which isconditioned by the query over the Marking relation verifying that the end place of the netis active and the process id as free variable. The action – with the process id as parameter,bound to the result of the condition free variable – includes the effects for the update of theshared database relations (using the process id) and the removal of all the Marking tuplescorresponding to the given process id. As the activation of a new case the update effects overthe shared database are modified according to their kind. PID of terminated process is addedto the relation Active, among the candidates for archival.Let w ∈ W be a DP-net in the model, E (w) = actw () : {e1, . . . , em} its shared update action,and end its end place. The corresponding rule is:
Marking(i, end) 7→

e℘(i)1 , . . . , e℘(i)

m

Marking(i, p) del Marking(i, p)true add Active(i)

Archival of data Archival of tuples is based on a two phases process: a c-a rule nondetermin-istically moves process ids from Active to ToArchive, while a second rule moves all the tuplesmarked with ids in ToArchive from shared to archive relations. These two steps are necessarybecause it might be the case that archiving the tuples of a single case would violate constraintsthat would be satisfied if were archived those generated by more than a case simultaneously.The archiving step succeeds only if constraints on both shared and archive are satisfied.Let R1, . . . , Rk be the relations in DG and Ra1 , . . . , Rak the corresponding relations in thearchive database. The ac-rules for archival are:
Active(i) 7→ {true add ToArchive(i), true del Active(i)}

true 7→

ToArchive(i) ∧ R1(~y)℘(i) {del R1(~y)℘(i),add Ra1 (~y)℘(i)}...
ToArchive(i) ∧ Rk (~y)℘(i) {del Rk (~y)℘(i),add Rak (~y)℘(i)}
ToArchive(i) del ToArchive(i)

4.3. Correctness and Completeness of DCDS EncodingThe main idea behind the proof is to define a correspondence between RAW-SYS snapshotsand DCDS states and showing that:1. integrity constraints are satisfied in snapshots iff their translation is satisfied in thecorresponding state

2. for every transaction between snapshots there is a corresponding pair in the transitionrelation between states, and vice versaThe above proof plan is complicated by the fact that archival is split in a sequence of stepsthat first generate the set of ids to archive and finally the actual archival step. From the
15

RAW-SYS to DCDS it’s easy, just sequence the right selection and then the archival. In theother direction there are DCDS transitions (the selection) that do not correspond to RAW-SYStransitions. Idea: show the property for non-selection transitions and then show that selectiondoesn’t alter the outcome.In the following we consider an arbitrary RAW-SYS model R = 〈DG ,W,S, E , σ〉, and thecorresponding DCDS transition system ΥS = 〈∆,R,Σ, s0, db,⇒〉 defined by the translation ofSection 4.
Definition 10. Let S = 〈IS , IA, C〉 be a snapshot of R, then the corresponding DCDS database
state Ξ(S) is defined as following:

1. for each relation R in IS , and tuple ~t ∈ R with provenance i, the tuple ~t℘(i) is in R℘ . No
other tuples are in R℘ .

2. for each relation R in IA, and tuple ~t ∈ R with provenance i, the tuple ~t℘(i) is in R℘ . No
other tuples are in R℘ .

3. for each case 〈i, w, (M, I)〉 ∈ C:
• for each relation R in I , and tuple ~t ∈ R , the tuple ~t℘(i) is in R℘ . No other tuples

are in R℘;
• for each place p in the domain of M the tuple 〈i, p〉 ∈ Marking iff M(p) > 0;

4. relations ToArchive and Archived are empty.

Let db(s) for some s ∈ Σ, then the corresponding RAW-SYS snapshot 〈IS , IA, C〉 = Ξ−(db(s))
is defined as following:

1. for each relation R in the schema of IS , R℘ ∈ db(s), and tuple ~t℘(i) ∈ R℘ , the tuple ~t is
in R ∈ IS with provenance i. No other tuples are in R .

2. for each relation R in the schema of IA, R℘ ∈ db(s), and tuple ~t℘(i) ∈ R℘ , the tuple ~t is
in R ∈ IA with provenance i. No other tuples are in R .

3. for each i s.t. exists 〈i, p〉 ∈ Marking there is a case 〈i, w, (M, I)〉 ∈ C s.t.:
• w is the DP-net corresponding to the place p;7

• for each relation R in the schema of I , R℘ ∈ db(s), and tuple ~t℘(i) ∈ R℘ , the tuple
~t is in R ∈ I . No other tuples are in R ;
• for each p′ place in w , M(p′) = 1 if 〈i, p′〉 ∈ Marking and M(p′) = 0 otherwise.

no other cases are in C.

First we show that the translation of queries is preserved across the translation betweenthe two systems.
Lemma 1. Let q be a query over local or shared databases of R, then for each snapshot
S = 〈IS , IA, C〉 the query is satisfied iff its translation is satisfied in d = Ξ(〈IS , IA, C〉).
Proof. Let’s consider first the case that q is a query over the shared database.If q is false on IS then q℘ must be false in d because all the process ids are projected awaytherefore its non-satisfiability would imply non-satisfiability of q in IS .On the other hand, if q℘ is false in d, then q must be false in IS because its relations arethe ones in d where the process ids are projected away.An analogous argument can be stated for the archive instance IA.

7We assumed distinct places, so each one can be associated to a single network.

16

If q is a query over a local database, then in q℘ the process id argument is universallyquantified over all the process ids. Therefore if q is false in all the local databases, then it isfalse in the union of all the databases parameterised by the pids. On the other hand, if q℘ isfalse in the union, then q must be false in every partition w.r.t. the pids.Now we can relate trajectories in R and in its translation and shows that that they can bereplayed in each other in such a way that any query satisfied in the final snapshot of one aresatisfied in the final state of the translation and vice-versa.
Lemma 2.

1. Let s0, . . . , sn be a trajectory in R, then there exists a trajectory s′0, . . . , s′k in Ξ(R) such
that s′k = Ξ(sn).

2. Let s′0, . . . , s′k be a trajectory in Ξ(R), then then there exists a trajectory s0, . . . , sn in R
s.t. sn = Ξ−(s′k).

Proof. We prove both items in the lemma by induction on the length of the trajectories.For trajectories of length 1 both items are satisfied by construction because both snapshotsand states are the initial ones.1. Let s0, . . . , sn, sn+1 be a trajectory in R and s′0, . . . , s′k in Ξ(R) such that s′k = Ξ(sn). Thetransition from sn to sn+1 is among the ones in Def 8. All but the last (archival) arein one to one mapping with DCDS ca-rule defined in Section 4.2. The behaviour of thetransitions is defined by means of DCDS actions and the control – including activationand termination of cases – is implemented by appropriate effects on the Marking relation.Archival transition on the other hand is implemented by a sequence of ca-rules. We canassume that ToArchive relation is empty and terminated pids are in the Active relation.If that is not the case then transitions corresponding to ca-rules
Active(i) 7→ {true add ToArchive(i), true del Active(i)}can be removed from s′0, . . . , s′k without affecting the equality s′k = Ξ(sn) because thoserelations are not considered in the conversion. Let i1, . . . , i` be the pids of tuples archivedby the sn to sn+1 transition. Then the sequence of ca-rules

Active(i1) 7→ {true add ToArchive(i1), true del Active(i1)}...
Active(i`) 7→ {true add ToArchive(i`), true del Active(i`)}

true 7→

ToArchive(i) ∧ R1(~y)℘(i) {del R1(~y)℘(i),add Ra1 (~y)℘(i)}...
ToArchive(i) ∧ Rk (~y)℘(i) {del Rk (~y)℘(i),add Rak (~y)℘(i)}
ToArchive(i) del ToArchive(i)

generates a sequence of additional states s′k+1, . . . , s′k+` , s′k+`+1 where s′k+`+1 = Ξ(sn+1).2. Let s′0, . . . , s′k , s′k+1 be a trajectory in Ξ(R), and s0, . . . , sn in R s.t. sn = Ξ−(s′k).If the transition from s′k to s′k+1 is different from the selection of process id

Active(i) 7→ {true add ToArchive(i), true del Active(i)}then it corresponds to the translation of one of the RAW-SYS transitions in Def. 8 andits application generates a snapshot sn+1 s.t. sn+1 = Ξ−(s′k+1).On the other end, if the transition is the selection of process id, then Ξ−(s′k+1) = Ξ−(s′k) =
sn; therefore the trajectory s0, . . . , sn satisfies the property.

17

The following theorem follows from the previous lemmata and shows that reachability prob-lems defined over RAW-SYS can be solved by translating them into an appropriate DCDSproblem.
Theorem 5. For each RAW-SYS model R, any reachability problems defined by means of safe
range queries over R can be translated into a reachability problem over Ξ(R).
Proof. Let q be a safe range query over R, we consider the problem of verifying whether thereis a trajectory of R s.t. in its final snapshot q is satisfied.If there is a trajectory s1, . . . , sn of R s.t. q is satisfied in sn, by Lemma 2, there is a trajectory
s′0, . . . , s′k in Ξ(R) such that s′k = Ξ(sn), and by Lemma 1 q is satisfied in sn iff q℘ is satisfiedin s′k . On the other end, if there is a trajectory s′0, . . . , s′k in Ξ(R) s.t. q℘ is satisfied in s′kthen there is a trajectory s1, . . . , sn of R s.t. s′k = Ξ(sn), therefore q is satisfied in sn byLemma 1.
5. Verification of DCDS using an action language

5.1. Data component D = 〈∆,R, C, I0〉
• Once the bound b for the specific DCDS has been established, the finite part of ∆ of size
b, let us call it ∆′ should go in the background knowledge. ∆ is such that adom(I0) ⊆ ∆′and also ∆′ contains all constants appearing elsewhere in the system (such as, in actions).
• For each R ∈ R of arity n we have a fluent declaration:

p(X1, . . . , Xn) (no requires part)
Fluents corresponding to database relations do not change unless updated:

inertial p(X1, . . . , Xn).
• For each (safe range) query Q(x1, . . . , xk) appearing in the model (both in data andprocess component) we have a fluent declaration

ρQ(X1, . . . , Xn) (no requires part)
and a set of causation rules of the form

caused head if body.corresponding to the translation in clausal form of the query Q.8
• Each denial constraint c ∈ C introduces a causation rule of the form:

caused false if c.

• I0 is translated as the initial state of the system. Hence, for each tuple ~d of relation Rin I0, we have a fact:
initially: R(~d).

8Translation could introduce additional fluents corresponding to the subqueries.

18

5.2. Process component P = 〈F ,A, ρ〉.
• For each condition-action rule Q(~p) 7→ act(~p) ∈ ρ an executability rule is introduced:

executable act(~P) if ρQ(~P).
• For each action act(~p) : {e1, . . . , em} ∈ A we can assume without loss of generality thateach effect ei is in one of the two form:

Q(~p, ~x) add R(~p, ~x)
Q(~p, ~x) del R(~p, ~x)

Where R is a single predicate. According to DCDS semantics addition of tuples takes theprecedence over deletions, therefore we need to make sure that unnecessary deletionsare not applied. To this end we use “default” rules, but we need to introduce an auxiliarypredicate to avoid unwanted interactions with the inertial rules. For each relation R weconsider a (non-inertial) predicate Rδ which intuitively holds the actual updates thatmust be applied to R .Add and deletes are defined over Rδ and the first kind of actions introduces causationrules like
caused Rδ (~P, ~X) after ρQ(~P, ~X), act(~P).while the second
caused −Rδ (~P, ~X) if not Rδ (~P, ~X) after ρQ(~P, ~X), act(~P).the negated part in the body of the rule makes sure that in the tuple is added the deletionis not applied. The actual relation R is “updated” by means of Rδ :
caused R(~X) if Rδ (~X).
caused −R(~X) if −Rδ (~X).

Skolem functionsAll occurrences of nondeterministic functions are replaced with fluents with an additionalargument representing the value of the function, and functional constraints to ensure thatthere’s a single value for the given tuple of arguments.Let f (~x) be a Skolem term of arity n in F , then we introduce the fluents ρf of arity n+ 1and ρ∅f of arity n to enforce non-emptiness. We also assume a typing predicate adom/1(not a fluent) holding the active domain for the Skolem constants.If an add (or del) term include includes Skolem functions, these are substituted by a newfresh variable in the head and the previously introduced predicate in the body, e.g.:
caused Rδ (~P, ~X, Xf) if ρf (~P, ~X, Xf) after ρQ(~P, ~X), act(~P).and analogously for del updates.We need to make sure that the “functional” predicate ρf is defined for the appropriatetuple (the one selected by ρQ(~P, ~X) and act(~P)). We achieve that by introducing a non-deterministic choice over the last argument of ρf :
caused ρf (X1, . . ., Xn, Y) if adom(Y), not −ρf (X1, . . ., Xn, Y) after ρQ(~P, ~X), act(~P).
caused −ρf (X1, . . ., Xn, Y) if adom(Y), not ρf (X1, . . ., Xn, Y) after ρQ(~P, ~X), act(~P).and making sure that at least a value is selected for the necessary tuples
ρ∅f (X1, . . ., Xn) :− ρf (X1, . . ., Xn, Y).

caused false if not ρ∅f (~P, ~X) after ρQ(~P, ~X), act(~P).Moreover we must impose a functional dependency of the last argument wrt the otherones:
19

caused false if ρf (X1, . . ., Xn, Y), ρf (X1, . . ., Xn, Z), Z != Y.Note that some of these rules do not depend on the actual action.
5.3. Verification tasksThe verification of reachability properties of the model is encoded with a query describing thegoal state for the planner. These properties can be related to the state of the (global) databaseas well as more general conditions over the dynamic of the system; e.g. the verification thatthere are no running processes can be performed by checking that no places are in the Markingrelation (i.e. there are no tokens).
5.4. Correctness and Completeness of DCDS EncodingThe correctness and completeness of our encoding is based on the results presented in [10]where reachability problem is encoded into an ADL planning problem [14].Although K language is strictly more expressive than ADL, therefore the encoding proposedin the paper can be directly used, we take advantage of its expressiveness to optimise theencoding.In particular, we improved the following aspects:
• in K integrity constraints can be encoded as rules, without the need of including addi-tional actions interleaved with the ones corresponding to DCDS ca-rules;
• functional symbols are simulated by K non-determinism leveraging stable models se-mantics of K rules, therefore they can be directly used in the DCDS actions instead oflimiting to ca-rule parameters.

The above improvements do not affect the structure of the proofs backing the results presentedin [10] which are still applicable to our translation into K.9
6. Example formalization

We resume the example described in Section 2 by assuming to have only the RB process.Hence, the shared database essentially contains the same schema of the local ones, but in thegeneral case it will not be the case. M = 〈DG ,W,S, E , σ〉 where:
• DG = Empl(empl), Dest(dest), Pending(empl, dest), Accepted(empl, dest, amount),

Rejected(empl,Dest);
• W = 〈W 〉;
• σ is such that σ (W) = startW;
• E is such that E (W) = endW;

The workflow net with data W = 〈D , P, T , F ,F ,A,G〉 where:
• D = Pending(empl, dest), CurrReq(empl, dest, status), TrvlMaxAmnt(maxAmnt),
TrvlCost(cost);
• P, T , F are as in Figure 2;
• F is such that:

9Full details and proofs can be found on the document available at https://www.dropbox.com/sh/

q1scvtz278xyzfb/AACTWp8vslOlVsWjaWsPmNTVa/main.pdf

20

https://www.dropbox.com/sh/q1scvtz278xyzfb/AACTWp8vslOlVsWjaWsPmNTVa/main.pdf
https://www.dropbox.com/sh/q1scvtz278xyzfb/AACTWp8vslOlVsWjaWsPmNTVa/main.pdf

– F (reviewReq) = {maxAmnt(), status()}
– F (fillReimb) = {cost()}

• A is such that:
– A(reviewReq) = reviewReq
– A(fillReimb) = fillReimb
– A(reviewReimb) = reviewReimb

• G is such that:
– G(reviewReq) = true
– G(fillReimb) = ∃e, d.CurrReq(e, d, accepted)
– G(reviewReimb) = true

6.1. Actions

startW() :

Pending(e, d) add {Pending(e, d)}
true

add {CurrReq(empl(),dest(), submttd)}
del {Pending(empl(),dest())}

rvwReq() :
CurrReq(e, d, s) del {CurrReq(e, d, s)}

add
{

CurrReq(e, d, status()),
TrvlMaxAmnt(maxAmnt())}

fillRmb() : { true add {TrvlCost(cost())}}

revwReimb() :

CurrReq(e, d, s)∧
Cost(c)∧
TrvlMaxAmnt(ma)∧
c ≤ ma

del {CurrReq(e, d, s)}
add {CurrReq(e, d, reimbursed)}

CurrReq(e, d, s)∧
Cost(c)∧
TrvlMaxAmnt(ma)∧
c > ma

del {CurrReq(e, d, s)}
add {CurrReq(e, d, rejected)}

endW() :

CurrReq(e, d, reimbursed)
∧TrvlCosts(c) add {Accepted(e, d, c)}
CurrReq(e, d, rejected)
∧TrvlMaxAmnt(ma) add {Rejected(e, d)}

21

Appendices

A. Data-Centric Dynamic Systems

In this section, we provide an overview of Data-Centric Dynamic Systems (DCDSs). Morespecifically, we introduce a variant of the original DCDS framework (first introduced in [5]).In this variant, actions are described following the action formalism of [21], which providesSTRIPS-like abstractions on top of the original DCDS action formalism. This variant is ex-pressively equivalent to the original one [21].
A.1. The DCDS FrameworkA DCDS S is a pair 〈D ,P〉, where D is the data component of S, and P is its process component.
Data component. The data component is a full-fledged relational database with constraints.Technically, D = 〈∆,R, C, I0〉, where:
• ∆ is a countably infinite set of constants.
• R is a database schema, i.e., a set of relation schemas. We will equivalently adopt thepositional notation or the attribute-based named notation for relations; When the latternotation is used, an n-ary relation R is represented as R(U), where U is a set of n namedattributes. Furthermore, given a set A ⊆ U of attributes, R [A] represents the projectionof R over A.
• C is a set of domain-independent FO-constraints over R, capturing the real-world con-straints of the targeted application domain.
• I0 is the initial database instance of S, i.e., a database instance conforming to R, satis-fying the constraints C, and made of values in ∆.Among all possible FO-constraints, we consider the following specific constraints, which arewidespread in database modelling and standard conceptual modelling languages such as UMLclass diagrams, E-R diagrams, and the ORM notation:
• Standard key and primary key constraints. We use notation KEY(R [A]) (resp., RA) tomodel that the set A of attributes is a key (resp., primary key) for relation R .
• Standard foreign key constraints. We use notation R [A]−→S[B] to model that the set Aof attributes in R is a foreign key pointing to the set B of attributes in S, such that SBholds.
• Cardinality-constraints, which resemble cardinality/frequency constraints of conceptualmodelling languages. Cardinality-constraints generalize key constraints by bounding theminimum and maximum number of tuples allowed in a relation when the value of someattributes is maintained unaltered. Given a relation R(U) and a set A ⊆ U of attributes,notation CARD(R [A], m..n), where m and n are positive integers, denotes the cardinality

constraint requiring that the number of R-tuples with the same values for attributes Aranges between m and n.
• A combination of cardinality and foreign key constraints, where a foreign key has anassociated cardinality constraint guaranteeing that the number of tuples pointing tothe same target primary key is bounded. We denote by A[R]m..n−−−−→B[S] the databaseconstraint corresponding to the conjunction of A[R]−→B[S] and CARD(A[R], m..n), and callsuch a conjunction a cardinality-bounded foreign key constraint. Notice that A[R]1..1−−−→

B[S] is equivalent to the combination of KEY(R [A]) and A[R]−→B[S].All these constraint types can be easily encoded as FO formulae. Some examples will beshown in Section A.3.
Process component. The process component P defines the progression mechanism for theDCDS. It is constituted by a process, which queries the current data maintained by D anddetermines which actions are executable, and with which parameters; parameterised actions,

22

in turn, query and update D , possibly introducing new values from the external environment,by issuing service calls. Technically, P = 〈F ,A, ρ〉, where
• F is a finite set of functions, each representing the interface to a (nondeterministic)

external service;
• A is a finite set of actions, whose execution updates the data component, and may involveexternal service calls;
• ρ is a finite set of condition-action rules that form the specification of the overall process,which tells at any moment which actions can be executed.

Actions. An action of A is an expression act(p1, . . . , pn) : {e1, . . . , em}, where:
• act(p1, . . . , pn) is the action signature, constituted by a name act and a sequence p1, . . . , pnof parameters, to be substituted with values when the action is invoked;
• {e1, . . . , em}, also denoted as effect(act), is a set of effects, which are assumed to takeplace simultaneously.Each effect ei has the form

Q(~p, ~x) add A del Dwhere:
• Q is a domain independent FO query over R whose terms are variables, action param-eters, and constants from I0. Intuitively, Q selects the tuples to instantiate the effectwith. During the execution, the effect is applied with a ground substitution ~d for theaction parameters, and for every answer θ to the query Q(~d, ~x).
• A is a set of facts over R, which include as terms: free variables ~x of Q, action parameters
~p and/or Skolem terms f (~x ′, ~p′) (with ~x ′ ⊆ ~x , and ~p′ ⊆ ~p). We use skolem(A) to denote allSkolem terms mentioned in A. At runtime, whenever a ground Skolem term is producedby applying substitution θ to A, the corresponding service call is issued, replacing it withthe result (from ∆) returned by the invoked service. The ground set of facts so obtainedis added by the DCDS to its current database instance.

• D is also a set of facts over R, which include as terms free variables ~x of Q and actionparameters ~p. At runtime, the ground facts obtained by applying substitution θ to D are
removed from the current database instance.As in STRIPS, we assume that additions have higher priority than deletions (i.e., if the samefact is asserted to be added and deleted during the same execution step, then the fact isadded). The “add A” part (resp., the “del D” part) can be omitted if A = ∅ (resp., D = ∅).

Process. The process ρ is a finite set of condition-action rules, each of the form Q(~x) 7→ act(~x),where act is an action in A and Q is again a FO query over R whose free variables areexactly the parameters of act, and whose other terms can be quantified variables or constantsmentioned in I0.Finally, notice that effects and condition-action rules can be rearranged in a modular way,by observing that:
• A single effect of the form

Q(~p, ~x) add A del Dcan be equivalently re-expressed as a set of effects
Q(~p, ~x) add A1 del D1

· · ·
Q(~p, ~x) add An del Dn

where some Ai or Di could possibly be ∅, and we have that A = ⋃
i∈{1,...,n} Ai and D =⋃

i∈{1,...,n}Di.

23

• Unions in condition-action rules can be implicitly obtained by composing multiple rules,since a single rule of the form ∨
i∈{1,...,n}Qi(~x) 7→ act(~x)

can be equivalently re-expressed as a set of rules
Q1(~x) 7→ act(~x) · · · Qn(~x) 7→ act(~x)

This equivalent rearrangement will be useful for the class of DCDSs introduced in Section 3,for which add and delete facts are required to obey to some restrictions.
A.2. Execution semanticsThe execution semantics of a DCDS S is a possibly infinite transition system ΥS whose statesare labeled by database instances. It represents all possible computations that the processcomponent can do on the data component. Specifically, ΥS = 〈∆,R,Σ, s0, db,⇒〉, where: (i) Σis a set of states; (ii) s0 ∈ Σ is the initial state; (iii) db is a function that, given a state s ∈ Σ,returns the database instance of s, which is made of values in ∆ and conforms to R and C;
(iv) ⇒ ⊆ Σ× Σ is a transition relation over states.Given a DCDS S = 〈D ,P〉 with D = 〈∆,R, C, I0〉 and P = 〈F ,A, ρ〉, the transition systemΥS is intuitively constructed as follows. Starting from I0, all condition-action rules in ρ areevaluated, determining which actions are executable, and with which ground parameter as-signments. Non-deterministically, one such action act with parameter assignment ρ is selectedand executed over I0. To do so, every effect e of act (partially grounded with the parameterassignment ρ) is evaluated, by calculating all the answers of its left-hand side, and groundingthe right-hand side accordingly. If the right-hand side of e contains service calls, they are is-sued, receiving back for each of them a value nondeterministically chosen from ∆. This value isthen used to substitute the service call with the actual result; notice that, within an executionstep, multiple occurrences of the same service call are substituted with the same value. Theoverall set of ground facts obtained by evaluating all effects of actρ in this way finally consti-tutes the next database instance. Notice that upon the execution of an action, the content ofa relation is lost unless it is explicitly maintained through dedicated effects of the action. Thetransition system construction then proceeds by constructing all possible successors, each ofwhich is obtained by selecting one of the executable actions with parameters, and one resultfor each of the involved service calls. The construction then recursively proceeds over suchnewly generated states. For a formal description of the execution semantics, see [5].
A.3. Robin Hood and the Archery Training ProcessWe now introduce a simple DCDS that summarizes all the key ingredients that will be dis-cussed in the remainder of the paper.Robin Hood is a renown archer, and needs an information system to keep track of the archerycourses he delivers to his apprentices among the merry men. To this end, he creates a DCDS
Srh that supports him in maintaining the information of interest, and manipulate it over time.The schema and constraints of Srh are listed in Figure 3. As for the schema:
• Group(id) states that there is an archery group identified by id.
• Meets(weekSlot, group,where) indicates that the weekly time slot weekSlot is ded-icated to the training of group in the location specified by the code where.
• MerryM(id, name, birthdate, combatLevel, group) states that the person identified by
id is a merry man named name and born on birthdate, who has currently an archeryability corresponding to combatLevel, and is enrolled in group. We reserve a specialconstant null to model the case where a person is not enrolled in any group.

24

Group
PK id

MerryM
PK idnamebirthdatecombatLevel {basic, ok, pro}
FK group

State
PK, FK groupstate {in, running, out}

Trusts
PK, FK1 subj
PK, FK2 obj

Meets
PK weekSlot
FK groupwhere

1..2

Figure 3: The archery training data component
• Trusts(subj, obj) models that merry man subj trusts merry man obj .
• State is a relation that glues the data component with the process component, in par-ticular to keep track of the current state of each group—an information that is used to“locate” the group inside the process. Specifically, State(group, s) indicates that groupis currently in state s, which may be either in (the group is being assembled), running(the group is under training), or out (the group has completed the training).The schema of Figure 3 is equipped with the following constraints:
• In each state, the combatLevel of a merry man is one of three pre-defined levels:

∀id, n, b, c, g.MerryM(id, n, b, c, g)
→ (c = basic ∨ c = ok ∨ c = pro)Similarly, for group states we have:

∀id, s.State(id, s)→ (s = in ∨ s = running ∨ s = out)
• The first columns of MerryM , State, and Meets are the (primary) keys of the correspond-ing relations10:

∀id, n1, b1, c1, g1, n2, b2, c2, g2.
MerryM(id, n1, b1, c1, g1) ∧MerryM(id, n2, b2, c2, g2)

→ n1 = n2 ∧ b1 = b2 ∧ c1 = c2 ∧ g1 = g2
∀id, s1, s2.State(id, s1) ∧ State(id, s2)→ s1 = s2
∀s, g1, w1, g2, w2.Meets(s, g1, w1) ∧Meets(s, g2, w2)

→ g1 = g2 ∧w1 = w2
• The two attributes of Trusts reference both a merry man. There are therefore two foreignkey constraints, formalized as:

∀s, o.Trusts(s, o)→ ∃n, b, c, g.MerryM(s, n, b, c, g)
∀s, o.Trusts(s, o)→ ∃n, b, c, g.MerryM(o, n, b, c, g)Similarly for the foreign key starting from the State relation.

• The foreign key starting from the MerryM relation does not start from an attribute thatis part of the primary key for the source relation. Hence, differently from the previouscase, the FO formalization needs to consider also the fact that the attribute is nullable:
∀id, n, b, c, g.MerryM(id, n, b, c, g)→ g = null ∨

Group(g)10Thanks to set semantics, there is no need to explicitly encode that the only column of Group is its primary key,and similarly for the combination of the only two columns of Trusts.

25

cr-group
in

start-train
running

end-train
out

add-appr add-slot
Figure 4: The archery training process control-flow. Tokens denote process cases, which inthis example correspond to groups of people
• Meets has a cardinality-bounded foreign key pointing to Group, of the form Meets[group]1..2−−−→

Group[id]. This can be formalized in FOL as:
∀s, g,w.Meets(s, g,w)→ g = null ∨ Group(g)
∀g, s1, w1, s2, w2, s3, w3.
Meets(s1, g,w1) ∧Meets(s2, g,w2) ∧Meets(s3, g,w3)
→ s1 = s2 ∨ s1 = s3 ∨ s2 = s3where null is again used to model that the foreign key may be null.Finally, the data component of Srh populates the MerryM relation with all the merry men thatlive together with Robin Hood in the Sherwood forest, together with their personal informationand trust relations. We also assume that, at the beginning, no group exists, and consequentlyall merry men have null in the corresponding attribute.Figure 4 shows a Petri net that sketches the archery training process. Inuitively, placesrepresent group states (and in fact they correspond to the possible values that the secondcolumn of relation State can take). Transitions correspond to DCDS actions manipulatinggroups and their related informations, whose executability depends on the group state.Specifically, the special cr-group action is always executable, and has the effect of creatinga new group in the information system, putting it into the in state. The group identifier isinjected into the system by calling the newId service.

true 7→ cr-group()
cr-group() : {true add

{
Group(newId()),
State(newId(), in)}}Robin Hood can add an apprentice to a newly created group, provided that the apprentice isnot already enrolled in a group. The effect of the action is to update the group attribute ofthe selected merry man; this is modeled by removing the current tuple of that merry man, andreinserting it with the updated group attribute.

Group(g) ∧ State(g, in) ∧
∃n, b, c.MerryM(id, n, b, c, null) 7→ add-appr(id, g)

add-appr(m, g) :{
MerryM(m, n, b, l, go) del {MerryM(m, n, b, l, go)}

add {MerryM(m, n, b, l, g)} }At the same time, a newly created group can be updated by providing a weekly slot in whichRobin inputs when and where a certain group meets.
Group(g) ∧ State(g, in) 7→ add-slot(g)

26

add-slot(g) :{true add {Meets(inWhen(g), g, inWhere(g))}}To model the two user inputs, service calls inWhen and inWhere are used, both taking asparameter the identifier of the group for which the slot is being created. We can imagine thatsuch service calls are actually realised as a user form that asks Robin Hood to provide thetime and location of the group given as input.Interestingly, although no explicit indication is given in the process control-flow of Figure 4,the combination between such control-flow and the data constraints tells us that at it willbe possible to add at most two weekly slots for the same group. This example attests howmuch involved process analysis becomes once the combination between the data and processcomponent is fully tackled.A group in the in state can be turned into a running group by executing the start-trainingaction. This has the effect of making the group not eligible anymore for adding new apprentices.
Group(g) ∧ State(g, in) 7→ start-train(g)

start-train(g) :{
State(g, s) del{State(g, s)} add{State(g, running)}}The end of the training for a running group is marked by executing the end-training action.Besides the state update for the group, this has a twofold effect:

• the combat level of each group member is updated according to the quality of his per-formance;
• the group members are dissociated from the group, becoming again free to be enrolledin another group.

Group(g) ∧ State(g, running) 7→ end-train(g)end-train(g) : State(g, s) del{State(g, s)} add{State(g, out)}
MerryM(m,n, b, l, g) del{MerryM(m,n, b, l, g)}

add{MerryM(m,n, b,assess(m), null)}

Notice that the combat level assessment is input by Robin Hood for each of the involved merrymen. To model such a user input, service call assess is used, which takes as parameter theidentifier of the merry man to be assessed. We can again imagine this service call to be realisedas a user form for Robin. Differently from the weekly slot case, though, the service call resultis implicitly subject to the database constraint that enumerates the acceptable values for the
combatLevel attribute of MerryM . This implies that the provided input needs to correspondto one of the three pre-defined levels.
A.4. Fresh Value InjectionA technical, but important, aspect related to DCDSs is that issuing a service call does notguarantee that the obtained result is a fresh value, that is, a value that is not present in thecurrent active domain11. In the archery training DCDS of Section A.3, this is perfectly fine withthe assess service call, which in fact is forced to return one of the three pre-defined combatlevels, but is not satisfactory with the newId service call. In fact, when creating a new group,the implicit requirement is that the identifier assigned to that group is not already assignedto another group. In this respect, the formalization of the cr-group action is not correct, as itcould result in a no-op if newId returns an identifier that is already assigned to another idlegroup in the in state.
11Recall that the active domain of a database instance is the set of values explicitly appearing in its tuples.

27

In this section, we show that DCDSs can easily model the injection of a new value thatis guaranteed to be fresh w.r.t. the values present in a given column of the current databaseinstance (this can be easily generalized to multiple columns, or even the entire active domain).This is particularly useful in all those cases where a new primary key has to be generated fora certain relation, such as that of create-group.Let f be a 0-ary service call, and let R be an n-ary relation. We want to ensure thatwhenever f is called, the obtained result is fresh w.r.t. the i-th column of R , i.e., different fromall values appearing in the i-th position of R-tuples in the current database instance. Thiscan be guaranteed by modifying the original DCDS specification as follows:1. The database schema of the original DCDS is augmented with two additional relations:a unary relation Tempf used to store a copy of the value returned by f , and an n-aryrelation Rprev , whose extension corresponds to the extension of R in the previous state.2. Each action of the original DCDS is augmented with two additional effects, used topopulate Rprev in the next state with the current extension of R . This is done by emptyingthe content of Rprev , and filling Rprev with the content currently stored by R :
Rprev (~x) del {Rprev (~x)}
R(~x) add {Rprev (~x)}3. Every action that employs f in (the head of) its effects is augmented with an additionaleffect, which enforces that a copy of the result returned by f is stored into relation Tempf :

true add {Tempf (f())}
4. The data component of the original DCDS is augmented with a constraint that enforcesthe freshness of the results returned by f w.r.t. the i-th component of (the previousextension of) R :

∀x1, . . . , xn.Rprev (x1, . . . , xn)→ ¬Tempf (xi)Thanks to this (linear) transformation, we can introduce the surface syntax fR [id] to indicatethat f is fresh w.r.t. the i-th column of R , remembering that a DCDS employing such a syntacticsugar can always be transformed into a standard DCDS.In this respect, the cr-group action of the archery training DCDS in Section A.3 can becorrectly rephrased as follows:
cr-group() :{true add

{
Group(newIdGroup[id]()),
State(newIdGroup[id](), in)}}

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical
Level. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1995.

[2] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Modeling and verifying Active XMLartifacts. Bull. of the IEEE Computer Society Technical Committee on Data Engineering,32(3):10–15, 2009.
[3] Serge Abiteboul, Victor Vianu, Bradley S. Fordham, and Yelena Yesha. Relational trans-ducers for electronic commerce. J. Comput. Syst. Sci., 61(2):236–269, 2000.
[4] Eric Badouel, Löıc Hélouët, and Christophe Morvan. Petri nets with semi-structured data.In Proc. of 36th International Conference on Application and Theory of Petri Nets and

Concurrency, 2015.
28

[5] Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Alin Deutsch, and MarcoMontali. Verification of relational data-centric dynamic systems with external services. In
Proc. of PODS, pages 163–174. ACM Press, 2013.

[6] Babak Bagheri Hariri, Diego Calvanese, Alin Deutsch, and Marco Montali. State-boundedness for decidability of verification in data-aware dynamic systems. In Proc.
of KR, 2014.

[7] Babak Bagheri Hariri, Diego Calvanese, Marco Montali, Giuseppe De Giacomo, RiccardoDe Masellis, and Paolo Felli. Description logic Knowledge and Action Bases. JAIR,46:651–686, 2013.
[8] Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. An abstraction technique forthe verification of artifact-centric systems. In KR, 2012.
[9] Diego Calvanese, Giuseppe De Giacomo, and Marco Montali. Foundations of data-awareprocess analysis: A database theory perspective. In Proc. of PODS, pages 1–12. ACMPress, 2013.

[10] Diego Calvanese, Marco Montali, Fabio Patrizi, and Michele Stawowy. Plan synthesis forknowledge and action bases. In Proc. of IJCAI, 2016. To appear.
[11] Diego Calvanese, Marco Montali, and Ario Santoso. Verification of generalizedinconsistency-aware knowledge and action bases. In Proc. of IJCAI, 2015.
[12] Giuseppe De Giacomo, Yves Lesperance, and Fabio Patrizi. Bounded situation calculusaction theories and decidable verification. In Proc. of KR, pages 467–477, 2012.
[13] Massimiliano de Leoni and Wil M. P. van der Aalst. Data-aware Process Mining: Discov-ering Decisions in Processes Using Alignments. In Proceedings of the 28th Annual ACM

Symposium on Applied Computing, SAC ’13, pages 1454–1461, New York, NY, USA, 2013.ACM.
[14] Conrad Drescher and Michael Thielscher. A fluent calculus semantics for ADL with planconstraints. In Proc. of the 11th Eur. Conf. on Logics in Artificial Intelligence (JELIA),volume 5293 of LNCS, pages 140–152. Springer, 2008.
[15] Richard Hull. Artifact-centric business process models: Brief survey of research resultsand challenges. In Proc. of OTM, LNCS. Springer, 2008.
[16] Bartek Kiepuszewski, Arthur Harry Maria ter Hofstede, and Christoph J. Bussler. On struc-tured workflow modelling. In Seminal Contributions to Information Systems Engineering.Springer, 2013.
[17] Ranko Lazić, Tom Newcomb, Joël Ouaknine, A. W. Roscoe, and James Worrell. Nets withTokens Which Carry Data. In Proceedings of the 28th International Conference on Ap-

plications and Theory of Petri Nets and Other Models of Concurrency, (ICATPN 2007),LNCS, pages 301–320. Springer, 2007.
[18] Andreas Meyer, Sergey Smirnov, and Mathias Weske. Data in business processes. Tech-nical Report 50, Hasso-Plattner-Institut for IT Systems Engineering, Universität Potsdam,2011.
[19] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
[20] Marco Montali and Diego Calvanese. Soundness of data-aware, case-centric processes.

International Journal on Software Tools for Technology Transfer, pages 1–24, 2016.
29

[21] Marco Montali, Diego Calvanese, and Giuseppe De Giacomo. Verification of data-awarecommitment-based multiagent systems. In Proc. of AAMAS, pages 157–164, 2014.
[22] A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification.

IBM Syst. J., 42(3):428–445, July 2003.
[23] Fernando Rosa-Velardo and David de Frutos-Escrig. Decidability and complexity of petrinets with unordered data. Theoretical Computer Science, 412(34):4439 – 4451, 2011.
[24] Natalia Sidorova, Christian Stahl, and Nikola Trcka. Soundness verification for conceptualworkflow nets with data: Early detection of errors with the most precision possible. Inf.

Syst., 36(7):1026–1043, 2011.
[25] Natalia Sidorova, Christian Stahl, and Nikola Trčka. Soundness verification for concep-tual workflow nets with data: Early detection of errors with the most precision possible.

Information Systems, 36(7):1026–1043, November 2011.
[26] W. M. P. Van Der Aalst. The application of petri nets to workflow management. Journal of

Circuits, Systems and Computers, 08:21–66, February 1998.
[27] Victor Vianu. Automatic verification of database-driven systems: a new frontier. In Proc.

of ICDT, pages 1–13, 2009.

30

	Introduction
	The RAW-SYS Framework
	Data model
	Petri Nets with Data
	Business Process Model and Semantics

	Reachability Analysis in RAW-SYSs
	Encoding RAW-SYS framework in DCDS
	Data Component
	Process Component
	Correctness and Completeness of DCDS Encoding

	Verification of DCDS using an action language
	Data component D ="426830A , R,C, I0 "526930B
	Process component ¶ = "426830A F,A, "526930B .
	Verification tasks
	Correctness and Completeness of DCDS Encoding

	Example formalization
	Actions

	Data-Centric Dynamic Systems
	The DCDS Framework
	Execution semantics
	Robin Hood and the Archery Training Process
	Fresh Value Injection

